Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201417

RESUMO

Coagulase-negative staphylococci (CoNS) may be considered contaminants when isolated from clinical specimens but may also be a cause of true infection. This study aimed to compare the clonality and SCCmec type of a collection of CoNS isolated from blood cultures of inpatients, nasal swabs of healthy individuals, and patients with chronic wounds, all from the same community, using SCCmec typing, pulsed-field gel electrophoresis (PFGE), and MLST. Staphylococcus epidermidis, exhibited high clonal diversity, but hospital and community clusters were observed. Nosocomial S. epidermidis clones belonged to sequence types ST2, ST6, and ST23. Some Staphylococcus haemolyticus clones were found to circulate in the hospital and community, while Staphylococcus saprophyticus exhibited very high clonal diversity. Staphylococcus lugdunensis, Staphylococcus warneri, and Staphylococcus capitis revealed several isolates belonging to the same clone in the hospital and community. The detection of different SCCmec types within the same cluster indicated high diversity. S. epidermidis was associated with SCCmec I and III, S. haemolyticus with I and II, S. capitis with type V, Staphylococcus hominis with mec complex type A and ccr1, and S. warneri and S. saprophyticus with SCCmec I. The generation of elements and new combinations of cassette genes were highly associated with CoNS isolates, suggesting that SCCmec may not be a good marker of clonality in these bacteria.

2.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287389

RESUMO

The ability of Staphylococcus epidermidis to produce virulence factors, such as biofilm, added to its increased resistance to antimicrobials can cause infections that are difficult to treat. Many staphylococcal virulence factors are under the control of the accessory gene regulator (agr). The objective of this study was to establish the agr locus and susceptibility of biofilm-producing S. epidermidis specimens to antimicrobial agents, through PCR reactions, reverse transcription polymerase chain reaction (RT-PCR), and the determination of minimum inhibitory concentration (MIC), and to analyze the clonal profile of 300 strains isolated from blood culture specimens from inpatients at a University Hospital in Brazil, over a 20-year period by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) techniques. The ica operon expression was shown in 83.6% strains, bhp gene in 11.5%, and aap gene in 32.8%. Oxacillin resistance was detected in 90.1%, while 4.9% showed tigecycline resistance, and intermediate resistance to quinupristin/dalfopristin was identified in 0.4%. Clonal profile determination showed 11 clusters, with the ST2 type determined as the major cluster. The S. epidermidis biofilm producer demonstrated a predominance of agr I locus, oxacillin resistance, and SCCmec III as well as the potential dissemination of pathogenic clones in hospital settings over long periods.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/metabolismo , Brasil , Eletroforese em Gel de Campo Pulsado/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Tipagem de Sequências Multilocus/métodos , Infecções Estafilocócicas/microbiologia , Virginiamicina/farmacologia
3.
Int J Mol Sci ; 17(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598130

RESUMO

The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species. Linezolid was the most effective drug in inhibiting staphylococci in the biofilm, without an increase in the MIC, when compared to planktonic cells. None of the isolates were resistant to this drug.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Plâncton/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/classificação , Coagulase/genética , Coagulase/metabolismo , Staphylococcus aureus/classificação , Staphylococcus aureus/enzimologia
4.
Toxins (Basel) ; 8(4): 104, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092525

RESUMO

Epidemiological studies have identified Staphylococcus aureus as the most common agent involved in food poisoning. However, current research highlights the importance of toxigenic coagulase-negative staphylococci (CoNS) isolated from food. The aim of this study was to characterize Staphylococcus spp. isolated from cows with bovine subclinical mastitis regarding the presence of genes responsible for the production of staphylococcal enterotoxins and of the tst-1 gene encoding toxic shock syndrome toxin 1, and to determine the clonal profile of the isolates carrying any of the genes studied. A total of 181 strains isolated in different Brazilian states, including the South, Southeast, and Northeast regions, were analyzed. The sea gene was the most frequent, which was detected in 18.2% of the isolates, followed by seb in 7.7%, sec in 14.9%, sed in 0.5%, see in 8.2%, seg in 1.6%, seh in 25.4%, sei in 6.6%, and ser in 1.6%. The sej, ses, set, and tst-1 genes were not detected in any of the isolates. The typing of the isolates by pulsed-field gel electrophoresis revealed important S. aureus and S. epidermidis clusters in different areas and the presence of enterotoxin genes in lineages isolated from animals that belong to herds located geographically close to each other.


Assuntos
Enterotoxinas/genética , Mastite Bovina/microbiologia , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Animais , Brasil , Bovinos , Coagulase , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...